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Abstract 

Spect~urrrgenerating algebra techniques developed in previous works to deal with the 
problem of  one particle in a potential are extended to deal with particles of spin -~. The 
method is illustrated considering the Pauli and Dirac equations with a Coulomb potential. 
The way to deal with some other potentials is indicated. In the Pauli equation an intrinsic 
electric dipole moment term is included. It is particularly remarkable the simplicity with 
which the solutions are obtained. 

1. Introduction 

The aim of  this paper is to extend the algebraic techniques developed mainly 
by Cordero and Ghirardi (1971a, b, 1972) and by Salam6 (1972) from the 
spectrum-generating algebras (SGA) of rotationally invariant systems to SGA 
of systems that conserve total angular momentum J. Formerly the relevant 
algebra was S0(2, 1) x SO(3)L while now the algebra is S0(2, 1) x SO(3)j 
where J = L +g/2.  

The main physically meaningful equations that we are going to consider are 
the Pauli equation for an electron having an electric dipole moment in a Coulomb 
potential (Feinberg, 1958; Salpeter, 1958) and the Dirac-Feynman-Gell-Mann 
equation (Feynman and C-ell-Mann, 1958) for the same potential. Cordero et 
at. (1971a) unsuccessfully attempted to solve the Dirac equation with the same 
techniques. Barut and Bomzin (1971)have found an algebraic solution for 
the Dirac equation with an algebra different to ours. As we show, the algebraic 
method is more general, however, since it allows to solve Pauli-like equations 
with either a Coulomb potential, or an r z potential or even a Morse potential, 
and all with extra a-terms. 

The method that we are going to use has been explained by Cordero et al. 
(1971a, b). Of those results, we need to know that the equation of motion can 
be written in the form 

{p2 - D(r)}~ = 0 (1.1) 
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and we essentially express it in terms of the generators of the SGA as a linear 
combination of them 

(1 + b)To + (1 - b)T1 - d = 0 (1.2) 

where the T are generators of SO(2, 1), while b and d are constants. 
From here it foUows (Cordero et al., 1971a, b) that 

l h"' 3{h"12 ( ~ ) 2  h'2 L 2 
2 h' 4kh'  ] - Q  -4b(h ' )2  + 2 d ~  - + ~ - = D [ r )  (1.3) 

The constants b and d are to be determined from self-consistency of equation 
(1.3), h(r) is a function with arbitrary normalization that we choose to suit 
(1.3), Q is the Casimir operator of SO(2, 1) 

Q = T~ - T12 - T~ (1.4) 

and L 2 is the orbital angular momentum operator. The discrete energy spect- 
rum is obtained from tilting (1.2) to pure To, giving 

2X/~ n + ~- + = d (1.5) 

where n = 0, 1, 2 , . . ' .  and q is the spectrum of the Casimir operator (1.4). 
Inside the bracket of equation (1.5) is the discrete spectrum of the compact 
generator of SO(2, 1). 

To illustrate the generalization of our method we first solve the Pauli 
equation mentioned above. Then, a more general Pauli-like equation is solved, 
and finally, we find the spectrum of the Dirac hydrogen atom by considering 
the Feynman-Gell-Man equation. 

2. An Electron with Intrinsic Electric Dipole Moment 

The first-order Pauli equation for an electron having an electric dipole 
moment moving in a Coulomb field has been treated by Feinberg (1958) and 
Salpeter (1958) in connection with the upper limits of the dipole moment of  
the electron. The equation considered by these authors is 

(p2 e2 f a'x ) 
~m r 2m r 3 E ~b = 0 (2.1) 

from where we obtain the function D(r) to be introduced in (1.3). For the left 
side of equation (1.3) we choose h(r) = r, yielding 

1 2d 
(L 2 - Q) ~ + -~- - 4b (2.2) 

while the right-hand side of this equation is 

_ _ _  2me 2 
f ~ ' x  1 + + 2mE (2.3) 

r r 2 r 
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The comparison of the last two expressions gives us the following results 

mE 
b ~ . _ _ _  

2 

d = m e  2 

Q = L2 _ fa'__xx (2.4) 
r 

These are the results that we need to find the energy spectrum by means of 
equation (1.5), except that we have to diagonalize the operator Q. To diagona- 
lize Q we define the operator (Salam6, 1972) 

G = _ f a ' x  _ a ' L -  1 (2 .5 )  
r 

which commutes with the Casimir operator Q, the total angular momentum f i  
and the compact generator T O of the SGA. Therefore G can be diagonalized 
simultaneously with these operators. It is straightforward to show that 

1 
G 2 = J 2  + ~ _ + f 2  

implying that the spectrum of G is 

g=  +_x/(j +_~)2 +f2 (2.6) 

The Casimir Q can now be expressed in terms of the diagonal operators 

Q=J= +{ +G (2.7) 

Hence, its spectrum is 

q = (j +~)2 +g (2.8) 

Replacing the values of b and d given in (2.4) and the value of q, (2.8), we get 

me 4 
En - 2[n +½ + @ + ½ ) z  +g+{]2  (2.9) 

which coincides with the spectrum given by Feinberg (1958) in his equation 
(18). 

A more general Pauli-like equation that we may consider with equal ease by 
means of our techniques is defined by the potential 

e 2 1 [w .a 'x  a ' L \  
V(r) . . . . .  r 2m 1 7  +3"-7 + k ~ )  (2.10) 

The values of b and d remain the same as in the previous case since (2.2) 
does not change and in (2.3) the only change happens in the term that behaves 
like r -2. The difference then is in the Casimir operator which now is given by 

Q =j2 + ~ + (1 + k)G + (k - w) (2.11) 
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where this time 

and its spectrum is 
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G =  
f Q'X 

a ' L - 1  
k + l  r 

The energy spectrum that we obtain this time is 

m e  4 

En -- - 2 i n  +½ + vcO-÷-~) 2 +(1 + k)g + ¼ ÷ ( k -  w)] 2 (2.12) 

I f  we wanted to solve a harmonic oscillator potential with the same extra 
a-terms we have to choose h(r) = r 2, and if the dominant potential  is a Morse 
potential we choose h = exp ( - a ( r  - ro) ). There is no difficulty in solving these 
cases and innumerable velocity-dependent potentials as well. 

3. The Dirac-Feynman-Gell-Mann Equation 

Finally, we derive the discrete energy spectrum of  the Dirac hydrogen atom. 
Feynman and Cell-Mann (1958) have shown that instead of  solving the four- 
component  Dirac equation one can deal equivalently with a two component  
equation which, in the case of  the Coulomb potential, is 

( p 2 - ( E + ~ )  2 +ie2a-~3 +m2) qJ=O (3.1) 

The situation is very similar to that o f  the previous section and again we 
choose h(r) = r but now d depends on the energy and b depends quadratically 
on it. Proceeding as before we get 

d = e2E 

m 2 _ E  2 
b ~ _ _ _ _ -  

4 

Q = L 2 + ie ~ ' x  _ e4 (3.2) 
r 

The steps to follow now are identical to those of  section 2. Defining 

f f 'X 
G = ie . . . . . . .  a" L - 1 (3.3) 

r 

it results that 

Q = G(G + 1) (3.4) 
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The operator G is again easily diagonalized and therefore the eigenvalues of  Q 
to be replaced in (1.5) are directly obtained. The equation for the energy 
spectrum is shown to be 

e2E 
n + l + g = ~  (3.5) 

where n = 0, 1, 2 . . . .  and 

g = ~/(j + _~)2 _ e 4 (3.6) 

The energy spectrum, o f  course, coincides with that of  Dirac. 
The simplicity with which the solutions have been obtained illustrates the 

value and interest o f  the algebraic techniques. 
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